
Termination Problems in Chemical Kinetics

Gianluigi Zavattaro1 and Luca Cardelli2

1 Dip. Scienze dell’Informazione, Università di Bologna, Italy
2 Microsoft Research, Cambridge, UK

Abstract. We consider nondeterministic and probabilistic termination
problems in a process algebra that is equivalent to basic chemistry. We
show that the existence of a terminating computation is decidable, but
that termination with any probability strictly greater than zero is un-
decidable. Moreover, we show that the fairness intrinsic in stochastic
computations implies that termination of all computation paths is unde-
cidable, while it is decidable in a nondeterministic framework.

1 Introduction

We investigate the question of whether basic chemical kinetics (kinetics of unary
and binary chemical reactions), formulated as a process algebra, is capable of
general computation. In particular, we investigate nondeterministic and proba-
bilistic termination problems in the Chemical Ground Form (CGF): a process
algebra recently proposed for the compositional description of chemical systems,
and proved to be both stochastically and continuously equivalent to chemical
kinetics (see [2] for the formal proof of equivalence between CGF and chemical
kinetics). The answers to those termination problems reveal a surprisingly rich
picture of what is decidable and undecidable in basic chemistry.

We consider three variants of the termination problem: existential, universal,
and probabilistic termination. By existential termination we mean the existence
of a terminating computation, by universal termination we mean that all possible
computations terminate (in a probabilistic setting, by possible computation we
mean that the computation has probability > 0), by probabilistic termination
we mean that with probability strictly greater than a given ε, with 0 < ε < 1,
a terminating computation is executed. We prove that, in the stochastic seman-
tics of CGF, existential termination is decidable, while both probabilistic and
universal termination are undecidable. In contrast, in a nondeterministic inter-
pretation of the CGF that abstracts from reaction rates, both existential and
universal termination are decidable. This means that: (a) chemical kinetics is
not Turing complete, (b) chemical kinetics is Turing complete up to any degree
of precision, (c) existential termination is equally hard (decidable) in stochastic
and nondeterministic systems, (d) universal termination is harder (undecidable)
in stochastic systems than in nondeterministic systems, (e) the fairness implicit
in stochastic computations makes checking universal termination undecidable.

In recent work, Soloveichik et al. [8], prove the non-Turing completeness of
Stochastic Chemical Reaction Networks (which are equivalent to the CGF [2])



by reduction to the decidability of chemical state coverability, which they call
reachability. We prove more strongly that exact chemical state reachability is
also decidable, as well as that existential termination and boundedness are de-
cidable. (All these argument are based on decidability results in Petri Nets.)
The same authors also prove the possibility of approximating RAM and Turing
Machine computations up to an arbitrarily small error ε. Their encodings allow
them to prove the undecidability of probabilistic coverability. We prove the un-
decidability of probabilistic termination, probabilistic reachability, probabilistic
boundedness, and of universal termination. There are technical differences in
our RAM encodings that guarantee the stronger results. For example, terminat-
ing computations are still terminating in our encoding of RAMs, while in [8] a
“clock” process keeps running even after termination of the main computation.

2 Chemical Ground Form

In the CGF each species has an associated definition describing the possible
actions for the molecules of that species. Each action π(r) has an associated
stochastic rate r (a positive real number) which quantifies the expected execution
time for the action π. Action τ(r) indicates the possibility for a molecule to be
engaged in a unary reaction. For instance, the definition A = τ(r); (B|C) says
that one molecule of species A can be engaged in a unary reaction that produces
two molecules, one of species B and one of species C (the operator “|” is borrowed
from process algebras such as CCS [6], where it represents parallel composition,
and corresponds here to the chemical “+”). Binary reactions have two reactants.
The two reactants perform two complementary actions ?a(r) and !a(r), where a is
a name used to identify the reaction; both the name a and the rate r must match
for the reaction to be enabled. For instance, given the definitions A =?a(r);C
and B =!a(r);D, we have that two molecules of species A and B can be engaged
in a binary reaction that produces two molecules, one of species C and one of
species D. If the molecules of one species can be engaged in several reactions,
then the corresponding definition admits a choice among several actions. The
syntax of choice is as follows: A = τ(r);B⊕?a(r′);C, meaning that molecules of
species A can be engaged in either a unary reaction, or in a binary reaction with
another molecule able to execute the complementary action !a(r′).

Definition 1 (Chemical Ground Form (CGF)). Consider the following de-
numerable sets: Species ranged over by variables X, Y , · · ·, Channels ranged over
by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of CGF is as follows (where the big

∣∣ separates syntactic alternatives
while the small | denotes parallel composition):

E ::= 0
∣∣ X=M,E Reagents

M ::= 0
∣∣ π;P ⊕M Molecule

P ::= 0
∣∣ X|P Solution

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output prefix
CGF ::= (E,P ) Reagents and initial Solution



Given a CGF (E,P ), we assume that all variables in P occur also in E. More-
over, for every variable X in E, there is exactly one definition X = M in E.

In the following, trailing 0 are left implicit, and we use | also as an operator
over the syntax: if P and P ′ are 0-terminated lists of variables, according to
the syntax above, then P |P ′ means appending the two lists into a single 0-
terminated list. Thus, if P is a solution, then 0|P , P |0, and P are syntactically
equal. The solution composed of k instances of X is denoted with

∏
kX.

We consider the discrete state semantics for the CGF defined in [2] in terms
of Continuous Time Markov Chains (CTMCs). The states of the CTMCs are
solutions in normal form denoted with P †: for a solution P , we indicate with
P † the normalized form of P where the variables are sorted in lexicographical
order (with 0 at the end), possibly with repetitions. The CTMC associated
to a chemical ground form is obtained in two steps: we first define the Labeled
Transition Graph (LTG) of a chemical ground form, then we show how to extract
a CTMC from the labeled transition graph.

We use the following notation. Let E.X be the molecule defined by X in E,
and M.i be the i-th summand in a molecule of the form M = π1;P1⊕· · ·⊕πn;Pn.
Given a solution in normal form P †, with P †.m we denote the m-th variable in
P †, with P †\(m1, · · · ,mn) we denote the solution obtained by removing from
P † the mi-th molecule for each i ∈ {1, · · · , n}.

A Labeled Transition Graph (LTG) is a set of quadruples 〈l : S† r→ T †〉 where
the transition labels l are either of the form {m.X.i} or {m.X.i, n.Y.j}, where
m,n, i, j are positive integers, X,Y are species names, m.X.i are ordered triples
and {· · · , · · ·} are unordered pairs.

Definition 2 (Labeled Transition Graph (LTG) of a Chemical Ground
Form). Given the Chemical Ground Form (E,P ), we define Next(E,P ) as the
set containing the following kinds of labeled transitions:

– 〈{m.X.i} : P † r→ T †〉 such that P †.m = X and E.X.i = τ(r);Q and T =
(P †\m)|Q;

– 〈{m.X.i, n.Y.j} : P † r→ T †〉 such that P †.m = X and P †.n = Y and m 6= n
and E.X.i =?a(r);Q and E.Y.j =!a(r);R and T = (P †\m,n)|Q|R.

The Labeled Transition Graph of (E,P ) is defined as follows:

LTG(E,P ) =
⋃
n Ψn

where Ψ0 = Next(E,P ) and Ψn+1 =
⋃
{Next(E,Q) | Q is a state of Ψn}

We now define how to extract from an LTG the corresponding CTMC.

Definition 3 (Continuous Time Markov Chain associated to an LTG).
If Ψ is an LTG, then |Ψ | is the associated CTMC, defined as the set of the triples
P

r7→ Q with P 6= Q, obtained by summing the rates of all the transitions in Ψ

that have the same source and target state: |Ψ | = {P r7→ Q s.t. ∃〈l : P r′→ Q〉 ∈
Ψ with P 6= Q, and r =

∑
ri s.t. 〈li : P ri→ Q〉 ∈ Ψ}.



It is worth noting that two solutions Q† and R† are connected by a transition
in LTG(E,P ) if and only if they are connected by a transition in |LTG(E,P )|.
In fact, the transitions of the latter are achieved by collapsing into one transition
those transitions of the former that share the same source and target solutions.
The rate of the new transition is the sum of the rates of the collapsed transitions.

Given a CGF (E,P ), a computation is a sequence of transitions in the CTMC
|LTG(E,P )| starting with a transition with source solution P †, and such that
the target solution of one transition coincides with the source state of the next
transition. We say that a solution Q is reachable in (E,P ) if there exists a
computation with Q† as the target solution of the last transition. A solution Q
is terminated in |LTG(E,P )| if Q† has no outgoing transitions.

The CTMC semantics of CGF defines a probabilistic interpretation of the
behavior of a CGF (E,P ): given any solution T † of |LTG(E,P )|, if it has n
outgoing transitions labeled with r1, · · ·, rn, the probability that the j-th tran-
sition is taken is rj/(

∑
i ri). Thus, we can associate probability measures (we

consider the standard probability measure for Markov chains —see e.g. [5]) to
computations in |LTG(E,P )|. We use this technique to define the three variants
of the termination problem we consider in this paper.

Definition 4 (Existential, universal and probabilistic termination). Con-
sider a CGF (E,P ) and its CTMC |LTG(E,P )|. Let p be the probability measure
associated to the computations in |LTG(E,P )| leading to a terminated solution.
We say that (E,P ) existentially terminates if p > 0, (E,P ) universally termi-
nates if p = 1, (E,P ) probabilistically terminates with probability higher than ε
(for 0 < ε < 1) if p > ε.

We will consider also probabilistic variants of other properties. Consider a
CGF (E,P ), its CTMC |LTG(E,P )|, and a real number ε such that 0 ≤ ε <
1. We say that a solution Q is ε-reachable if the probability measure of the
computations in |LTG(E,P )| leading to Q† is > ε. We say that (E,P ) is ε-bound
if the set of ε-reachable solutions is finite. We say that (E,P ) is ε-terminating
if the probability measure of the computations in |LTG(E,P )| leading to a
terminated solution is > ε. We say that (E,P ) is ε-diverging if the probability
measure of the infinite computations in |LTG(E,P )| is > ε.

It is worth noting that, in a probabilistic setting, existential termination coin-
cides with 0-termination, universal termination with the negation of 0-divergence,
and probabilistic termination with ε-termination for ε > 0.

3 Decidability Results

In this section we resort to a Place/Transition Petri net (P/T net) semantics for
CGF, that can be interpreted as a purely nondeterministic semantics of CGF
that abstracts away from the stochastic rates. In this purely nondeterministic
framework several properties are decidable. In fact, in P/T nets, properties such
as reachability (the existence of a computation leading to a given state), bound-
edness (the finiteness of the set of reachable states), termination (reachability of



a deadlocked state), and divergence (the existence of an infinite computation)
are decidable (see [4] for a survey on decidable properties for Petri Nets).

Definition 5 (Place/Transition Net). A P/T net is a tuple N = (S, T )
where S is the set of places, Mfin(S) is the set of the finite multisets over S
(each of which is called a marking) and T ⊆ Mfin(S) ×Mfin(S) is the set
of transitions. A transition (c, p) is written c⇒ p. The marking c, represents
the tokens to be “consumed”; the marking p represents the tokens to be “pro-
duced”. A transition c⇒ p is enabled at a marking m if c ⊆ m. The execution
of the transition produces the marking m′ = (m \ c)⊕ p (where \ and ⊕ are the
difference and the union operators on multisets). This is written as m[〉m′. A
dead marking is a marking in which no transition is enabled. A marked P/T
net is a tuple N(m0) = (S, T,m0), where (S, T ) is a P/T net and m0 is the ini-
tial marking. A computation in N(m0) leading to the marking m is a sequence
m0[〉m1[〉m2 · · ·mn[〉m.

Given a CGF (E,P ), we define a corresponding P/T net N = (S, T ) and a
corresponding marked P/T net N(m0). We first need to introduce an auxiliary
function Mark(P ) that associates to a solution P the multiset of its variables:

Mark(P ) =
{
∅ if P = 0
{X} ⊕Mark(P ′) if P = X|P ′

Definition 6 (Net of a CGF). Given a CGF (E,P ), with Net(E,P ) we denote
the corresponding P/T net (S, T ) where:

S = {X | X occurs in E}
T =

{
{X}⇒Mark(X1| · · · |Xn) |

E.X.i = τ(r); (X1| · · · |Xn)
}
∪{

{X,Y }⇒Mark(X1| · · · |Xn)⊕Mark(Y1| · · · |Ym) |
E.X.i =?a(r); (X1| · · · |Xn) and E.Y.j =!a(r); (Y1| · · · |Ym)

}
The corresponding marked P/T net is Net(E,P )(Mark(P )).

Note that the set of places S corresponds to the set of variables X defined
in E, the transitions represents the possible actions, and the initial marking is
the multiset of variables in the solution P . It is also worth observing that in the
net semantics we do not consider the rates (r) of the actions.

We now formalize the correspondence between the behaviors of a CGF and
of its corresponding P/T net.

Theorem 1. Consider a CGF (E,P ) and the corresponding P/T net Net(E,P ) =
(S, T ). We have that:

1. if 〈l : P † r→ Q†〉 is in Next(E,P ) (for some l and r) then we have also that
Mark(P )[〉Mark(Q) in Net(E,P );

2. if there exists m such that Mark(P )[〉m in Net(E,P ), then there exist l, r
and Q such that 〈l : P † r→ Q†〉 is in Next(E,P ) and Mark(Q) = m.



Proof (sketch). The proofs of the two statements are by case analysis on the
possible transitions in Next(E,P ) as defined in the Definition 2 —for the first
statement— or on the possible transitions enabled in Mark(P ) as defined in the
Definition 6 —for the second statement. ut

This theorem allows us to conclude that the P/T net semantics faithfully
reproduces the standard CGF transitions. The only difference is that it ab-
stracts away from the stochastic rates. For this reason, we consider the P/T
net semantics as a purely nondeterministic interpretation of CGF. Reachability,
boundedness, termination, and divergence are decidable for P/T nets; thus we
can conclude that all these properties are decidable also in the CGF under a
purely nondeterministic interpretation.

As a consequence of Theorem 1, existential termination is decidable.

Theorem 2. Consider a CGF (E,P ). We have that (E,P ) existentially termi-
nates if and only if a dead marking is reachable in the Net(E,P )(Mark(P )).

Proof. It is easy to see from the definition of LTG(E,P ) and |LTG(E,P )| that
the latter contains all and only those solutions (in normal form) reachable in
(E,P ) with a finite number of transitions, each one having a probability > 0 to
be chosen. Thus a solution is reachable with probability > 0 if and only if it is
in |LTG(E,P )|. As a consequence of Theorem 1 we have that a solution Q† is in
|LTG(E,P )| if and only if Mark(Q) is reachable in Net(E,P )(Mark(P )). More-
over, Theorem 1 also guarantees that Q is terminated if and only if Mark(Q) is
a dead marking in Net(E,P ) (this proves the theorem). ut

As a corollary of Theorem 1 we have that also the probabilistic variants of
reachability and boundedness can be reduced to the corresponding properties in
the nondeterministic setting. On the contrary, this does not hold for divergence.
(This will be discussed in the next section.) We can summarize the results of
this section simply saying that ε-termination, ε-reachability, and ε-boundedness
are decidable when ε = 0.

4 Undecidability Results

This section is divided in two parts. In the first one we prove that probabilistic
termination (i.e. ε-termination with ε > 0) is undecidable. (We also comment
on how to show that also ε-divergence, ε-boundedness, and ε-reachability are
undecidable when ε > 0.) In the second part we prove the undecidability of
universal termination (thus also of 0-divergence).

4.1 Undecidability of Probabilistic Termination

We prove the undecidability of probabilistic termination showing how to approxi-
mately model in CGF the behavior of any Random Access Machines (RAMs) [7],
a well known register based Turing powerful formalism. More precisely, we re-
duce the termination problem for RAMs to the probabilistic termination with
probability higher than any ε such that 0 < ε < 1.

We first recall the definition of Random Access Machines.



Definition 7 (Random Access Machines (RAMs)). A RAM R is com-
posed of a set of registers r1, · · · , rm that contain non negative integer numbers
and a set of indexed instructions I1, · · · , In of two possible kinds:

– Ii = Inc(rj) that increments the register rj and then moves to the execution
of the instruction with index i+ 1 and

– Ii = DecJump(rj , s) that attempts to decrement the register rj; if the reg-
ister does not hold 0 then the register is actually decremented and the next
instruction is the one with index i+ 1, otherwise the next instruction is the
one with index s.

We use the following notation: (Ii, r1 = l1, · · · , rm = lm) represents the
state of the computation of the RAM which is going to execute the instruc-
tion Ii with registers that contain l1, · · · , lm, respectively; (Ii, r1 = l1, · · · , rm =
lm) 7→ (Ij , r1 = l′1, · · · , rm = l′m) describes one step of computation of the RAM;
(Ii, r1 = l1, · · · , rm = lm) ↓ denotes final states of the computation in which Ii is
undefined. Without loss of generality, we assume the existence of a special index
halt such that all final states contain an instruction with that index, namely
(Ii, r1 = l1, · · · , rm = lm) ↓ if and only if i = halt.

The basic idea that we follow in modeling RAMs in CGF is to use one species
Ii for each instruction Ii, and one species Rj for each register rj . The state
(Ii, r1 = l1, · · · , rm = lm) of the RAM is modeled by a solution that contains
one molecule of species Ii, l1 molecules of species R1, · · ·, and lm molecules of
species Rm (plus a certain amount of inhibitor molecules of species Inh, whose
function will be discussed below). The behavior of the molecules of species Ii

is to update the register according to the corresponding instruction Ii, and to
activate the execution of the next instruction Ij by producing the molecule of
species Ij .

An Inc(rj) instruction simply produces one molecule of species Rj . On the
other hand, a DecJump(rj , s) instruction should test the absence of molecules
of species Rj before deciding whether to execute the jump, or to consume one of
the available molecules of that species. As it is not possible to verify the absence
of molecules, we admit the execution of the jump even if molecules of species
Rj are available. In this case, we say that a wrong jump is executed. In order to
reduce the probability of wrong jumps, we put their execution in competition
with alternative behaviors involving the inhibitor molecules in such a way that
the greater is the quantity of inhibitor molecules in the solution, the smaller is
the probability to execute a wrong jump.

We are now ready to formally define our encoding of RAMs.

Definition 8. Given a RAM R and one of its states (Ii, r1 = l1, · · · , rm = lm),
let [[(Ii, r1 = l1, · · · , rm = lm)]]h denote the solution:

Ii |
∏
l1

R1 | · · · |
∏
lm

Rm |
∏
h

Inh



where:

Ii =


τ ; (Ii+1|Rj) if Ii = Inc(rj)
!rj ; (Ii+1|Inh) ⊕ τ ;C2

i,s if Ii = DecJump(rj , s)
0 if Ii = Ihalt

C2
i,s = !inh; Ii ⊕ τ ;C1

i,s C1
i,s = !inh; Ii ⊕ τ ; Is

Rj = ?rj ; 0 Inh = ?inh; Inh

Note that h is used to denote the number of occurrences of the molecules of
species Inh. We take all subscripts action rates equal to 1 and we omit them
(this choice allows us to simplify the proof of Proposition 1). In the following,
we use ER for the set of the above definitions of species Ii, C2

i,s, C
1
i,s, R

j, Inh.

Note that before actually executing a jump, two internal τ actions must be
executed in sequence (those in the definition of the species C2

i,s and C1
i,s), and

both of them are in competition with the action !inh willing to perform an
interaction with one of the inhibitor molecules of species Inh. Thus, the higher
is the number of inhibitor molecules, the smaller is the probability to perform
this sequence of two internal actions.

We now formalize the correspondence between the behavior of a RAM and
of its encoding in CGF.

Proposition 1. Let R be a RAM. Given one of its states (Ii, r1 = l1, · · · , rm =
lm) and [[(Ii, r1 = l1, · · · , rm = lm)]]h, for any h, we have:

1. if Ii = Ihalt then (Ii, r1 = l1, · · · , rm = lm) ↓ and Next(ER, [[(Ii, r1 =
l1, · · · , rm = lm)]]h) has no transitions;

2. if Ii = Incrj or Ii = DecJump(rj , s) with lj = 0 and (Ii, r1 = l1, · · · , rm =
lm) 7→ (Ij , r1 = l′1, · · · , rm = l′m), then the solution [[(Ij , r1 = l′1, · · · , rm =
l′m)]]†h is reachable in (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) with probability = 1;

3. if Ii = DecJump(rj , s) with lj > 0 and (Ii, r1 = l1, · · · , rm = lm) 7→ (Ij , r1 =
l′1, · · · , rm = l′m), then the solution [[(Ij , r1 = l′1, · · · , rm = l′m)]]†h+1 is reach-
able in (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) with probability > 1− 1

h2 .

Proof. If Ii = Ihalt or Ii = Inc(rj) the corresponding statements (the first one
and the first part of the second one) are easy to prove. We detail the proof only
for Ii = DecJump(rj , s).

If rj is empty, the probability measure for the computations in (ER, [[(Ii, r1 =
l1, · · · , rm = lm)]]h) passing through [[(Ij , r1 = l′1, · · · , rm = l′m)]]†h is (see Fig-
ure 1):

∞∑
i=0

( h

h+ 1
+

1
h+ 1

× h

h+ 1
)i × 1

(h+ 1)2
= 1

If rj is not empty, i.e. lj > 0, the standard probability measure for the
computations passing through [[(Ij , r1 = l′1, · · · , rm = l′m)]]†h+1 is (see Figure 1):

∞∑
i=0

( 1
lj + 1

× h

h+ 1
+

1
lj + 1

× 1
h+ 1

× h

h+ 1
)i × lj

lj + 1
> 1− 1

h2



1

1

1

1

1
lj

(a) (b)

1h

h

h

h

[[(Ii, r1 = l1, · · · , rm = lm)]]†h [[(Ii, r1 = l1, · · · , rm = lm)]]†h

[[(Ij, r1 = l
0
1, · · · , rm = l0m)]]†h+1

[[(Ij, r1 = l
0
1, · · · , rm = l0m)]]†h

Fig. 1. Fragment of the CTMC |LTG(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h)| in case Ii =
DecJump(rj , s) with lj = 0 (a) or lj > 0 (b).

ut
The above proposition states the correspondence between a single RAM step

and the corresponding encoding in CGF. We conclude that a RAM terminates its
computation if and only if a terminated solution is reachable with a probability
that depends on the initial number of inhibitor molecules in the encoding.

Theorem 3. Let R be a RAM. We have that the computation of R starting
from the state (Ii, r1 = l1, · · · , rm = lm) terminates if and only if the CGF
(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) probabilistically terminates with probability
higher than 1−

∑∞
k=h

1
k2 .

Proof. In the light of Proposition 1 we have that only decrement operations are
not reproduced with probability = 1, but with probability > 1 − 1

h2 . More-
over, after the execution of a decrement operation, the value h of inhibitor
molecules is incremented by one. Thus, a RAM computation including d decre-
ment operations is faithfully reproduced with probability strictly greater than∏h+d
k=h

(
1− 1

k2

)
> 1−

∑h+d
k=h

1
k2 . Henceforth, any terminating computation is re-

produced with probability strictly greater than 1−
∑∞
k=h

1
k2 . ut

It is well known that the series
∑∞
h=1

1
h2 is convergent (to π2

6 ), thus for ev-
ery small value δ > 0 there exists a corresponding initial amount h of inhibitor
molecules such that

∑∞
k=h

1
k2 < δ. Henceforth, in order to reduce RAM termi-

nation to probabilistic termination with probability higher than any 0 < ε < 1,
it is sufficient to consider an initial value h such that

∑∞
k=h

1
k2 < (1− ε).



The RAM encoding presented in Definition 8 reproduces also unbounded
RAM computations with any degree of precision. Thus also ε-divergence is un-
decidable when ε > 0. On the contrary, such encoding does not allow us to prove
the undecidability of ε-boundedness and ε-reachability.

We first show how to reduce the RAM divergence problem to ε-boundedness.
This does not hold for the encoding in the Definition 8 because there exists
divergent RAMs with a bounded corresponding CGF. Consider, for instance,
the RAM composed of only the instruction I1 = DecJump(r1, 1) that performs
an infinite loop if the register r1 is initially empty. It is easy to see that the
corresponding CGF is bounded.

In order to guarantee that an infinite RAM computation generates an un-
bounded CGF, we can simply add a new molecule of a new species A every time
a jump is performed. As an infinite RAM computation executes infinitely many
jump operations, an unbounded amount of molecules of species A will be gener-
ated. The new encoding is defined as in the Definition 8 replacing the definition
of the species C1

i,s with the following one: C1
i,s = !inh; Ii ⊕ τ ; (Is|A).

We conclude this section observing how to reduce RAM termination to ε-
reachability. This does not hold for the above encodings because the solution
representing the final state of a RAM computation is not known beforehand. In
fact, besides the fact that the final contents of the registers is not known, we have
that the final solution will contain a number of inhibitor molecules that depends
on the number of decrement operations executed during the computation (as
each decrement adds one molecule of species Inh). In order to know beforehand
the final solution, we allow the molecule Ihalt to remove the register molecules
of species Rj as well as all the inhibitor molecules of species Inh. In this way, if
the computation terminates, we have that the final solution surely contains only
the molecule Ihalt.

Namely, we modify in the Definition 8 the definitions of the species Ihalt and
Inh as follows:

Ihalt =
⊕m

j=1!rj ; Ihalt ⊕ !remove; Ihalt

Inh = ?inh; Inh ⊕ ?remove; 0

4.2 Undecidability of Universal Termination

The undecidability of universal termination (thus also of 0-divergence) is proved
introducing an intermediary nondeterministic computational model, that we call
finitely faulting RAMs (FFRAMs). This model corresponds to RAMs in which
the execution of DecJump instructions is nondeterministic when the tested reg-
ister is not empty: an FFRAM can either decrement the register or execute
a wrong jump. The peculiarity of FFRAMs is that in an infinite computation
only finitely many wrong jumps are executed. We first show that it is possible
to define an encoding of FFRAMs in CGF such that the universal termina-
tion problem for FFRAMs coincides with the universal termination problem
for the corresponding CGF. Then we prove the undecidability of the universal
termination problem for FFRAMs showing how to reduce the RAM termina-
tion problem to the verification of the existence of an infinite computation in



FFRAMs (which corresponds to the complement of the universal termination
problem). We start defining finitely faulting RAMs.

Definition 9 (Finitely Faulting RAMs (FFRAMs)). Finitely Faulting
RAMs are defined as traditional RAMs (see Definition 7) with the only differ-
ence that given an instruction Ii = DecJump(rj , s) and a RAM state (Ii, r1 =
l1, · · · , rj = lj , · · · , rm = lm) with lj > 0, two possible computation steps are
permitted: (Ii, r1 = l1, · · · , rj = lj , · · · , rm = lm) 7→ (Ii+1, r1 = l1, · · · , rj =
lj − 1, · · · , rm = lm) and (Ii, r1 = l1, · · · , rj = lj , · · · , rm = lm) 7→ (Is, r1 =
l1, · · · , rj = lj , · · · , rm = lm). The second computation step is called wrong jump
because a jump is executed even if the tested register is not empty. The peculiar
property of FFRAMs is that in every computation (also infinite ones), finitely
many wrong jumps are executed.

We now show how to define an encoding of FFRAMs in CGF such that infi-
nite computations in the FFRAMs computational model corresponds to infinite
computation with probability > 0 in the corresponding CGF.

The FFRAM encoding is defined as in Definition 8 adding a transition to
a terminated state which can be selected with probability ≥ 1

2 while execut-
ing wrong jumps. In this way, we guarantee that in an infinite computation
infinitely many wrong jumps cannot be executed because the new transition to
the terminated state cannot be avoided indefinitely.

Definition 10 (FFRAM Modeling). Given a FFRAM R and one of its
states (Ii, r1 = l1, · · · , rm = lm), [[(Ii, r1 = l1, · · · , rm = lm)]]h is defined as in
Definition 8. Also the species Ii, Rj, Inh, and C2

i,s are defined as in Definition 8,
while C1

i,s is defined as follows:

C1
i,s = !inh; Ii ⊕ τ ;C0

s C0
s = !rj ; Ihalt ⊕ τ ; Is

In the following, we use ER for the new set of definitions of species Ii, C2
i,s,

C1
i,s, C

0
s , Rj, and Inh.

We now revisit the Proposition 1 adapting it to the new encoding.

Proposition 2. Let R be a FFRAM. Given one of its states (Ii, r1 = l1, · · · , rm =
lm) and [[(Ii, r1 = l1, · · · , rm = lm)]]h, for any h, we have:

1. (as in Proposition 1);
2. (as in Proposition 1);
3. if Ii = DecJump(rj , s) with lj > 0 then with probability 1 one of the following

states are reachable in (ER, [[(Ii, r1 = l1, · · · , rj = lj , · · · , rm = lm)]]h):
– [[(Ii+1, r1 = l1, · · · , rj = lj − 1, · · · , rm = lm)]]†h+1 (with prob. > 1− 1

h2 );
– [[(Ihalt, r1 = l1, · · · , rj = lj , · · · , rm = lm)]]†h;
– [[(Is, r1 = l1, · · · , rj = lj , · · · , rm = lm)]]†h (with probability 0 < p < 1

2).



1

1

1
lj

lj

1

h

h

[[(Is, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h

[[(Ihalt, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h

[[(Ii+1, r1 = l1, · · · , rj = lj − 1, · · · , rm = lm)]]†h+1

[[(Ii, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h

Fig. 2. Fragment of the CTMC |LTG(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h)| in case Ii =
DecJump(rj , s) with lj > 0.

Proof. The first two statements are proved as in Proposition 1. We sketch the
proof for the third statement. The probability measure for the computations
in (ER, [[(Ii, r1 = l1, · · · , rj = lj , · · · , rm = lm)]]h) passing through [[(Ii+1, r1 =
l1, · · · , rj = lj − 1, · · · , rm = lm)]]†h+1 is computed as in Proposition 1.

The probability measure p for the computations passing through [[(Is, r1 =
l1, · · · , rj = lj , · · · , rm = lm)]]†h is (see Figure 2):

∞∑
i=0

( 1
lj + 1

× h

h+ 1
+

1
lj + 1

× 1
h+ 1

× h

h+ 1
)i × ( 1

lj + 1
)2 × ( 1

h+ 1
)2

It is easy to see that as lj > 0, then p < 1
2 . Finally, we observe that the probability

measure of the computations leading to [[(Ihalt, r1 = l1, · · · , rj = lj , · · · , rm =
lm)]]†h is equal to 1 minus the probability measure of the computations passing
through either [[(Ii+1, r1 = l1, · · · , rj = lj − 1, · · · , rm = lm)]]†h+1 or [[(Is, r1 =
l1, · · · , rj = lj , · · · , rm = lm)]]†h. ut

The above proposition states the correspondence between a single computa-
tion step of a FFRAM and that of the corresponding CGF. We conclude that
a FFRAM has an infinite computation if and only if there exists an infinite
computation with probability > 0 in the corresponding CGF.

Theorem 4. Let R be a FFRAM. We have that R has an infinite computa-
tion starting from the state (Ii, r1 = l1, · · · , rm = lm) if and only if the CGF



(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) has an infinite computation for some initial
amount h of inhibitor molecules.

Proof. We first consider the only if part. Assume the existence of an infinite
computation of R starting from the state (Ii, r1 = l1, · · · , rm = lm). This compu-
tation will execute infinitely many DecJump instructions, but only finitely many
wrong jumps. We now consider the CGF (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) for a
generic h. According to the Proposition 2, it can reproduce the same infinite com-
putation with probability strictly greater than

∏∞
k=h

(
1− 1

k2

)
×
∏w
k=1 pk where w

is the number of wrong jumps, and pk is the probability for the k-th wrong jump
computed as in Proposition 2. Let pmin be the minimum among p1, · · · , pw. We
have that the above probability is strictly greater than

(
1−
∑∞
k=h

1
k2

)
×
(

1
pmin

)w.
We have already discussed, after Theorem 3, that the series

∑∞
h=1

1
h2 is conver-

gent, thus there exists h such that
∑∞
k=h

1
k2 < 1. If we consider this particular

value h, the overall probability for the infinite computation is > 0.
We now consider the if part. Assume the existence of an infinite compu-

tation with probability > 0 in the CGF (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h)
for some h. This computation corresponds to an infinite computation of R for
the two following reasons. We first observe that the infinite computation repro-
duces infinitely many correct computation steps (Ii, r1 = l1, · · · , rm = lm) 7→
(Ij , r1 = l′1, · · · , rm = l′m) of R. In fact, the unique wrong computation step
could be the one described in the second item of the third statement of Propo-
sition 2. This computation step leads to the encoding of the terminated state
(Ihalt, r1 = l1, · · · , rj = lj , · · · , rm = lm), but in this case the computation cannot
be infinite. Then, we observe that the number of wrong jumps is finite. In fact,
if we assume (by contradiction) that the computation contains infinitely many
wrong jumps, we have that (in the light of the third item of the third statement
of Proposition 2) the probability of the infinite computation is smaller than∏∞
i=1

1
2 , thus it cannot be > 0. ut

We now prove that the existence of an infinite computation in FFRAMs
is undecidable by defining an encoding that reduces the termination problem
for RAMs to the divergence problem for FFRAMs. As it is not restrictive, we
consider only RAMs starting with all registers empty. Our technique has been
inspired by a similar one used in [3]. We initially assume that an arbitrary number
k of wrong jumps occurs and, as a consequence, the number k is introduced in a
special register. Then we let the FFRAM repeat indefinitely the simulation of
the behavior of the corresponding RAM, but if this simulation requires more than
k steps, the encoding blocks (this is ensured by decrementing the special register
before simulating every computational step). In this way, if a RAM terminates,
then the corresponding FFRAM (with k greater than the length of the RAM
computation) can diverge. On the other hand, if an infinite computation of the
FFRAM exists, this has an infinite suffix that does not contain wrong jumps. In
this correct part of the computation, the encoding faithfully simulates the RAM
computation infinitely often; this is possible only if the RAM terminates.



Theorem 5. Given a RAM R, there exists a corresponding FFRAM [[R]] such
that the computation of R (starting with all registers empty) terminates if and
only if [[R]] has an infinite computation (starting with all registers empty).

Proof. Given a RAM R with instructions I1, · · · , In (assuming In = Ihalt) and
registers r0, · · · , rm, with [[R]] we denote the FFRAM composed of the registers
r0, r1, · · · , rm, rm+1, rm+2, rm+3 and of the following instructions:

J1 = Inc(rm+1)
J2 = DecJump(rm+1, 1)
J3i = DecJump(rm+1, halt) (for 1 ≤ i < n)
J3i+1 = Inc(rm+2) (for 1 ≤ i < n)

J3i+2 =
{
Inc(rj) if Ii = Inc(rj)
DecJump(rj , 3s) if Ii = DecJump(rj , s)

(for 1 ≤ i < n)

J3n+2j = DecJump(rj , 3n+ 2j + 2) (for 1 ≤ i ≤ m)
J3n+2j+1 = DecJump(rm+3, 3n+ 2j) (for 1 ≤ i ≤ m)
J3n+2m+2 = DecJump(rm+2, 3)
J3n+2m+3 = Inc(rm+1)
J3n+2m+4 = DecJump(rm+3, 3n+ 2m+ 2)

We prove that the computation ofR starting from the state (I1, r0 = 0, · · · , rm =
0) terminates if and only if [[R]] has an infinite computation starting from the
state (J1, r0 = 0, · · · , rm+3 = 0).

We first consider the only-if part. We assume that the RAM R terminates
after the execution of k steps. The corresponding FFRAM [[R]] has the following
infinite computation which contains exactly k wrong jumps. The wrong jumps
are all executed at the beginning of the compuation in order to introduce in
rm+1 the value k. Then the computation proceeds simulating infinitely many
times the computation of R. Note that at the end of each simulation, all the
registers r1, · · · , rm are emptied, and the value k (which is introduced in rm+2

during the computation, is moved back in rm+1). Note also that the register
rm+3 is always empty, and that it is simply tested for zero by instructions that
must always perform a jump.

We now consider the if part. Assume that the FFRAM [[R]] has an infinite
computation. This computation starts with k executions of the instructions J1

and J2. The loop between these two instructions cannot proceed indefinitely as it
contains a wrong jump. At the end of this first phase, the register rm+1 contains
k. Then the computation continues by simulating the behavior of the RAM R,
and before executing every instruction the register rm+1 is decremented and the
register rm+2 is incremented. If (by contradiction) the register rm+1 becomes
empty before completing the simulation of R, the computation should block.
Thus, the simulation completes before simulating k steps. After, all the registers
r0, · · · , rm are emptied, the value k is reintroduced in rm+1, and a new simulation
is started. This part of the computation, i.e. simulation ofR and subsequent reset
of the registers, surely terminates because the simulation of R includes at most
k steps, and the subsequent reset of the registers cannot proceed indefinitely. We
can conclude that an infinite computation includes infinitely many simulations



of the computation of R and, as an FFRAM can perform only finitely many
wrong jumps, infinitely many of these simulations are correct. This implies that
the RAM R terminates within k computation steps. ut

5 Conclusion

In this paper we have investigated the decidability of termination problems in
CGF, a process algebra proposed in [2] for the compositional description of
chemical systems. In particular, we have proved that existential termination is
decidable, probabilistic termination is undecidable, and universal termination is
decidable under a purely nondeterministic interpretation of CGF while it turns
to be undecidable under the stochastic semantics.

It is worth saying that similar results hold also for lossy channels: universal
termination is decidable in lossy channels while it turns out to be undecidable
in their probabilistic variant [1]. Nevertheless, the result on lossy channels is not
comparable with ours. In fact, in CGF process communication is synchronous (in
lossy channels synchronous communication is not admitted) while in the lossy
channel model it is asynchronous through unbounded FIFO buffers (that cannot
be directly encoded in CGF).

Acknowledgement. We would like to acknowledge M. Bravetti, D. Solove-
ichik, H. Wiklicky, E. Winfree, and the anonymous referees for their insightful
comments on previous versions of this paper.

References

1. P. Abdulla, C. Baier, P. Iyer, and B. Jonsson. Reasoning about Probabilistic Lossy
Channel Systems. In Proc. of 11th International Conference on Concurrency Theory
(Concur), volume 1877 of LNCS, pages 320–333, 2000.

2. L. Cardelli. On Process Rate Semantics. Theoretical Computer Science, in press,
2008. Available at http://dx.doi.org/10.1016/j.tcs.2007.11.012.

3. H. Carstensen. Decidability Questions for Fairness in Petri Nets. In Proc. of 4th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume
247 of LNCS, pages 396–407, 1987.

4. J. Esparza and M. Nielsen. Decidability Issues for Petri Nets, 1994. Technical report
BRICS RS-94-8.

5. J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains. Springer
Verlag, 1976.

6. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
7. M. L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
8. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with Finite

Stochastic Chemical Reaction Networks. Natural Computing, in press, 2008. Avail-
able at http://dx.doi.org/10.1007/s11047-008-9067-y.


